Breaking `128-bit Secure' Supersingular Binary Curves

نویسندگان

  • Robert Granger
  • Thorsten Kleinjung
  • Jens Zumbrägel
چکیده

In late 2012 and early 2013 the discrete logarithm problem (DLP) in finite fields of small characteristic underwent a dramatic series of breakthroughs, culminating in a heuristic quasipolynomial time algorithm, due to Barbulescu, Gaudry, Joux and Thomé. Using these developments, Adj, Menezes, Oliveira and Rodŕıguez-Henŕıquez analysed the concrete security of the DLP, as it arises from pairings on (the Jacobians of) various genus one and two supersingular curves in the literature, which were originally thought to be 128-bit secure. In particular, they suggested that the new algorithms have no impact on the security of a genus one curve over F21223 , and reduce the security of a genus two curve over F2367 to 94.6 bits. In this paper we propose a new field representation and efficient general descent principles which together make the new techniques far more practical. Indeed, at the ‘128-bit security level’ our analysis shows that the aforementioned genus one curve has approximately 59 bits of security, and we report a total break of the genus two curve.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Breaking '128-bit Secure' Supersingular Binary Curves (or how to solve discrete logarithms in ${\mathbb F}_{2^{4 \cdot 1223}}$ and ${\mathbb F}_{2^{12 \cdot 367}}$)

In late 2012 and early 2013 the discrete logarithm problem (DLP) in finite fields of small characteristic underwent a dramatic series of breakthroughs, culminating in a heuristic quasipolynomial time algorithm, due to Barbulescu, Gaudry, Joux and Thomé. Using these developments, Adj, Menezes, Oliveira and Rodŕıguez-Henŕıquez analysed the concrete security of the DLP, as it arises from pairings ...

متن کامل

High Speed Cryptoprocessor for η T Pairing on 128-bit Secure Supersingular Elliptic Curves over Characteristic Two Fields

This paper presents an efficient architecture for computing cryptographic ηT pairing for providing 128-bit security. A cryptoprocessor is proposed for Miller’s Algorithm with a new 1223-bit Karatsuba multiplier that exploits parallelism. To the best of our knowledge this is the first hardware implementation of 128-bit secure ηT pairing on supersingular elliptic curves over characteristic two fi...

متن کامل

Compact Hardware for Computing the Tate Pairing over 128-Bit-Security Supersingular Curves

This paper presents a novel method for designing compact yet efficient hardware implementations of the Tate pairing over supersingular curves in small characteristic. Since such curves are usually restricted to lower levels of security because of their bounded embedding degree, aiming for the recommended security of 128 bits implies considering them over very large finite fields. We however man...

متن کامل

GPU-Based Implementation of 128-Bit Secure Eta Pairing over a Binary Field

Eta pairing on a supersingular elliptic curve over the binary field F21223 used to offer 128-bit security, and has been studied extensively for efficient implementations. In this paper, we report our GPUbased implementations of this algorithm on an NVIDIA Tesla C2050 platform. We propose efficient parallel implementation strategies for multiplication, square, square root and inverse in the unde...

متن کامل

On the Efficiency and Security of Pairing-Based Protocols in the Type 1 and Type 4 Settings

We focus on the implementation and security aspects of cryptographic protocols that use Type 1 and Type 4 pairings. On the implementation front, we report improved timings for Type 1 pairings derived from supersingular elliptic curves in characteristic 2 and 3 and the first timings for supersingular genus-2 curves in characteristic 2 at the 128-bit security level. In the case of Type 4 pairings...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014